Transforming the Control of Hot Tubs

Revolution

Intellectual Property Advisement

All Intellectual property, as defined below, owned by or which is otherwise the property of Balboa Water Group or its respective suppliers relating to the Balboa Water Group Revolution Spa Control, including but not limited to, accessories, parts, or software relating there to (the “System”), is proprietary to Balboa Water Group and protected under federal laws, state laws, and international treaty provisions. Intellectual Property includes, but is not limited to, inventions (patentable or unpatentable), patents, trade secrets, copyrights, software, computer programs, and related documentation, and other works of authorship. You may not infringe or otherwise violate the rights secured by the Intellectual Property. Moreover, you agree that you will not (and will not attempt to) modify, prepare derivative works of, reverse engineer, decompile, disassemble, or otherwise attempt to create source code from the software. No title to or ownership in the Intellectual Property is transferred to you. All applicable rights of the Intellectual Property shall remain with Balboa Water Group and its suppliers.

End User Warning

This Installation Manual is provided solely to aid qualified spa service technicians in installing spas with control systems manufactured by Balboa Water Group. Balboa controls have absolutely no end user serviceable parts. Balboa Water Group does not authorize attempts by the spa owner/user to repair or service any Balboa products. Non-qualified users should never open or remove covers, as this will expose dangerous voltage points and other dangerous risks. Please contact your dealer or authorized repair center for service.
Warnings: Danger! Risk of Electric Shock!

- All electrical work must be performed by a qualified electrician and must conform to all national, state, and local codes.
- Before making any electrical connections, make certain that the Main Power breaker from the house breaker box has been turned off.
- Do not attempt service of this control system. Contact your dealer or service organization for assistance.
- Do not permit any electric appliance, such as a light, telephone, radio, or television within 5’ (1.5m) of a pool or spa.
- Follow all owner’s manual power connection instructions.
- Installation must be performed by a licensed electrician and all grounding connections must be properly installed.
- No user serviceable parts.
- Water temperature in excess of 38°C may be injurious to your health.
- Disconnect the electrical power before servicing.
- Keep access door closed.
CAUTION

- Test the ground fault circuit interrupter before each use of the spa.
- Read the instruction manual.
- Adequate drainage must be provided if the equipment is to be installed in a pit.
- To ensure continued protection against shock hazard, use only identical replacement parts when servicing.
- Install a VG Compliant suction guard that is suitably rated to match the maximum flow rate marked.

WARNING:
Water temperature in excess of 38°C may be injurious to your health.
Disconnect the electrical power before servicing.
Keep access door closed.

ATTENTION

- Toujours verifier l’efficacite du disjoncteur differentiel avant d’utiliser le bain.
- Lire la notice technique.
- Lorsque l’appareillage est installe dans une fosse, on doit assurer un drainage adequat.
- Afin d’assurer une protection permanente contre le danger de shock electrique, lors de l’entretien employer seulement des pieces de rechange identiques.
- Les prises d’aspiration doivent etre equipees de grilles convenant au debit maximal indique.

AVERTISSEMENT:
Des temperatures de l’eau superieures a 38°C peuvent presenter un danger pour la sante.
Deconnecter du circuit d’alimentation electrique avant l’entretien.
Garder la porte fermer.
Transforming the Control of Hot Tubs

Revolution

GFCI

It is required by code to install a Ground Fault Circuit Interrupter (GFCI) in the supply power for a spa. This device will trip the breaker if there is an unsafe electrical condition caused by a malfunctioning component or even the slightest short to ground.

Note: Connect the control system only to a circuit protected by a Class A GFCI mounted at least 5’ (1.52M) from the inside walls of the spa/hot tub and in line of sight from the equipment compartment.

TABLE OF CONTENTS

REVOLUTION OVERVIEW
- Revolution Features ... 10
- Revolution Specifications 11
- Revolution Components .. 12
 - System Dimensions 13

INSTALLATION
- When Mounting the System 15
- Top-Side Panel Installation 16
 - Choosing a Location for the Topside Panel 16
 - Cutout Template for TP600 18
 - Cutout Template for TP400 19
 - Topside Panel Cable Installation 20
 - Terminal Block Connections 21

FILLING AND PRIMING THE SPA
- Preparing the Spa .. 23
- Fill the spa .. 23
- Power-up the Spa .. 23
 - RUN PMPS PURG AIR 24
- Priming Mode .. 25
- If the Pumps have not Primed 26
- Exiting Priming Mode 27

INITIAL SOFTWARE CONFIGURATION
- Setting the Time ... 29
- To Set the Time .. 29

INSTALLATION
- When Mounting the System 15
- Top-Side Panel Installation 16
 - Choosing a Location for the Topside Panel 16
 - Cutout Template for TP600 18
 - Cutout Template for TP400 19
 - Topside Panel Cable Installation 20
 - Terminal Block Connections 21

FILLING AND PRIMING THE SPA
- Preparing the Spa .. 23
- Fill the spa .. 23
- Power-up the Spa .. 23
 - RUN PMPS PURG AIR 24
- Priming Mode .. 25
- If the Pumps have not Primed 26
- Exiting Priming Mode 27

INITIAL SOFTWARE CONFIGURATION
- Setting the Time ... 29
- To Set the Time .. 29

DIAGNOSTIC MESSAGES
- Messages .. 33
 - General Messages .. 34
 - ---°F ---°C .. 34
 - 42°F TOO COLD 34
 - NO COMM ... 34
 - BETA VERSION 35
 - 102°T ... 35
 - Flow Related Checks 35
 - Heater Related Messages 36
 - HTR FLOW LOSS 36
 - HTR FLOW FAIL 36
 - HTR MAY BE DRY WAIT 36
 - HTR DRY .. 36
 - WATR TOO HOT (OHS) 37
 - HTR TOO HOT (OHH) 37
 - PRES BTN TO RSET 37
 - Sensor-Related Messages 38
 - 102°F SNSR BALANCE 38
 - SNSR SYNC CALL FOR SRVC 38
 - SNSR A CALL FOR SRVC 38
 - SNSR B CALL FOR SRVC 38
 - System-Related Messages 39
 - MEM FAIL 39
 - MEM RSET 39

Manufactured under one or more of these patents. U.S. Patents: 5332944, 5361215, 5550753, 5559720, 5,883,459, 6253227, 6282370, 6590188, 6976052, 6965815, 7030343, 7,417, 834 b2, Canadian Patent: 2342614, Australian patent: 2373248 other patents both foreign and domestic applied for and pending. All material copyright of Balboa Water Group.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNFG FAIL</td>
<td>39</td>
</tr>
<tr>
<td>STUK PUMP</td>
<td>40</td>
</tr>
<tr>
<td>HOT FALT CALL FOR SRVC</td>
<td>40</td>
</tr>
<tr>
<td>TROUBLESHOOTING SUPPORT</td>
<td>41</td>
</tr>
<tr>
<td>The Utilities Menu</td>
<td>42</td>
</tr>
<tr>
<td>Entering the Utilities Menu</td>
<td>43</td>
</tr>
<tr>
<td>Entering the Sub-utilities Menu</td>
<td>46</td>
</tr>
<tr>
<td>Fault Log</td>
<td>52</td>
</tr>
<tr>
<td>Fault Log Message Codes</td>
<td>55</td>
</tr>
<tr>
<td>ADVANCED SYSTEM CONFIGURATION & SETUP</td>
<td>56</td>
</tr>
<tr>
<td>System Configuration</td>
<td>57</td>
</tr>
<tr>
<td>To Configure the Revolution</td>
<td>58</td>
</tr>
<tr>
<td>Configuration Table</td>
<td>58</td>
</tr>
<tr>
<td>Configuration Setup 1, 2, 5 & 6</td>
<td>59</td>
</tr>
<tr>
<td>240 Volt Configuration without Blower</td>
<td>59</td>
</tr>
<tr>
<td>Configuration Setup 3 & 4</td>
<td>60</td>
</tr>
<tr>
<td>240 Volt Configuration with Blower</td>
<td>60</td>
</tr>
<tr>
<td>Configuration Setup 7 & 8</td>
<td>61</td>
</tr>
<tr>
<td>120 Volt Configuration</td>
<td>61</td>
</tr>
<tr>
<td>BP1600 230V Conversions</td>
<td>62</td>
</tr>
<tr>
<td>The Following Pages Are BP1600 230V Setups</td>
<td>62</td>
</tr>
<tr>
<td>IT Electrical System (No Neutral)</td>
<td>69</td>
</tr>
<tr>
<td>TN and TT Electrical Services (Line, Neutral, Ground), IT Power Requirements</td>
<td>69</td>
</tr>
<tr>
<td>Software Setup</td>
<td>70</td>
</tr>
<tr>
<td>SPA INFORMATION</td>
<td>74</td>
</tr>
<tr>
<td>Specifications & Certifications</td>
<td>75</td>
</tr>
<tr>
<td>Auxiliary Panels</td>
<td>76</td>
</tr>
<tr>
<td>Plumbing Kit Options</td>
<td>77</td>
</tr>
<tr>
<td>Tailpiece Kit and Circ Pump Insert Kits</td>
<td>77</td>
</tr>
<tr>
<td>Recommended Installation Accessories</td>
<td>78</td>
</tr>
<tr>
<td>Optional System Components</td>
<td>79</td>
</tr>
<tr>
<td>Glossary</td>
<td>80</td>
</tr>
<tr>
<td>Supporting Documents</td>
<td>83</td>
</tr>
<tr>
<td>Supporting Documents for Download</td>
<td>83</td>
</tr>
<tr>
<td>Codes and Compliance</td>
<td>84</td>
</tr>
<tr>
<td>Electrical Protection</td>
<td>85</td>
</tr>
<tr>
<td>Safety and Electrical Systems</td>
<td>85</td>
</tr>
<tr>
<td>Voltage Checks</td>
<td>86</td>
</tr>
<tr>
<td>INSTALLATION AND SETUP/APPENDIX</td>
<td>87</td>
</tr>
<tr>
<td>General Spa Design Guidelines</td>
<td>88</td>
</tr>
<tr>
<td>System Orientations Supported</td>
<td>88</td>
</tr>
<tr>
<td>Two Circulation Systems</td>
<td>88</td>
</tr>
<tr>
<td>Spa Guidelines to Keep in Mind</td>
<td>89</td>
</tr>
<tr>
<td>Non-Circ Pump Plumbing Schematics</td>
<td>92</td>
</tr>
<tr>
<td>Circ Pump Plumbing Schematics</td>
<td>93</td>
</tr>
<tr>
<td>Pressure and Suction Side Mounting</td>
<td>94</td>
</tr>
<tr>
<td>Mounting</td>
<td>95</td>
</tr>
<tr>
<td>Suction-Side System Mounting</td>
<td>96</td>
</tr>
<tr>
<td>INDEX</td>
<td>97</td>
</tr>
</tbody>
</table>

Manufactured under one or more of these patents. U.S. Patents: 5332944, 5361215, 5550753, 5559720, 5,883,459, 6253227, 6282370, 6590188, 6976052, 6965815, 7030343, 7,417, 834 b2, Canadian Patent: 2342614, Australian patent: 2373248 other patents both foreign and domestic applied for and pending. All material copyright of Balboa Water Group.
Revolution Overview
Overview

REVOLUTION – Transforming the Control of Hot Tubs

Balboa’s Revolution hot tub control is setting a new industry standard for unmatched system reliability, manufacturing flexibility and end user friendliness.

INCOMPARABLE SYSTEM RELIABILITY

Utilizing advanced technology and high temperature corrosion proof mission critical materials from the automotive and other industries, the Revolution hot tub control systems all but eliminate leaks due to corrosion or harsh chemicals. Together with a newly designed, energy efficient heating coil that reduces element failures due to rattling, Balboa is providing peace of mind for the end-user.

TIGHT SPOTS ARE A THING OF THE PAST

The Revolution sports a compact low profile package offering flexibility with mounting to give you the most in tub design and manufacturing line flexibility. A single model can be configured on the line to support various system configurations without adding additional skus – the Revolution expands the world for you.

POWERFUL, YET SIMPLE USERFACE

The sleek new topside panel includes a large easy to read back-lit LCD with simple to follow end user menus. With new press and hold button technology, setting temperature and other common tasks have been simplified. User navigation is intuitive and easier than ever, reducing customer service help calls.
revolution features

Consumer Interface Innovations
- press and hold buttons provide scrolling capabilities for temperature, time of day etc.
- tactile button feel, instant, positive feedback when button is pressed
- bigger LCD display, 1”x 2” display (easy to read)
- display with backlight, easier to see

Consumer Usability Innovations
- end user friendliness, easier to see and use in low light and at night
- user settable selections, day of week/time of day user preferences
- more flexibility
- temperature settings, 50-104 – two temperature ranges
- lower range allows for energy savings when spa is idle

End User Friendliness
- user friendly menus, intuitive, easy navigation and option settings
- english messages & error codes
- text error messages clearly written and easy to understand for the consumer

Inventory Innovations
- 50/60 Hz systems available for domestic or export markets
- reduces inventory needs fewer skus
- single skus, multiple configurations are picked via menus on the manufacturing line
- reduced inventory need fewer skus

End User Friendliness
- design flexibility, the ease with which the system can be modified for use in applications or environments other than those for which it was originally designed
- bi-directional flow, pressure or vacuum applications
- compact footprint, 1/2 cubic foot of space in tight equipment compartments needed
- time outs settable, energy efficient savings based on manufacturers preferences, manages energy usage more efficiently – GREEN

System Innovations
- M7 patented technology that increases reliability
- corrosion resistant heater elements materials, no brazing, no dissimilar metals, no welds
- thermoplastic heater enclosure, high tech, high temp materials proven use in automotive & mission critical applications
- minimizes harmful effects of harsh chemicals on heater enclosure
- titanium element option, standard unit ships with incoloy heater replaces incoloy heater element with titanium, longer life element
- coiled heater, lower watt density, relaxed bends, more heating area reduces hot spots
- flow through heater design, maximizes water flow
- minimal loss due to element bi-directional flow for more flexibility in tub design and plumbing configurations

Heater Innovations
- patented technology that increases reliability
- corrosion resistant heater elements materials, no brazing, no dissimilar metals, no welds
- thermoplastic heater enclosure, high tech, high temp materials proven use in automotive & mission critical applications
- minimizes harmful effects of harsh chemicals on heater enclosure
- titanium element option, standard unit ships with incoloy heater replaces incoloy heater element with titanium, longer life element
- coiled heater, lower watt density, relaxed bends, more heating area reduces hot spots
- flow through heater design, maximizes water flow
- minimal loss due to element bi-directional flow for more flexibility in tub design and plumbing configurations

JETS AUX LIGHT HEAT

JETS AUX HEAT LIGHT

50/60 Hz systems available for domestic or export markets
- reduces inventory needs fewer skus
- single skus, multiple configurations are picked via menus on the manufacturing line
- reduced inventory need fewer skus

Low flow circ pumps configurations
- special low flow adapter to support M7 more options for circ pump tubs

Bi-directional flow for more flexibility in tub design and plumbing configurations
- compact footprint, 1/2 cubic foot of space in tight equipment compartments needed
- time outs settable, energy efficient savings based on manufacturers preferences, manages energy usage more efficiently – GREEN

Design flexibility, the ease with which the system can be modified for use in applications or environments other than those for which it was originally designed

M7 patented technology that increases reliability
Revolution

Revolution Specifications

System Model
Revolution 60 Hz (BP1500), 50 Hz (BP1600)

Part Numbers
BP1500 (60Hz): 56125-02 4kW 800 Incoloy Element
56126-02 With 4kW Titanium Element
BP1600 (50Hz): 56129-02 3kW 800 Incoloy Element
56130-02 3kW Titanium Element

Topside Panels
TP600 Panel
AX10: One button
AX20: Two button
AX40: Four button

TP400 Series Panel
TP400T (Temp, Jets, Light, Aux)
TP400W (Warm, Cool, Light, Jets)

Couplings (nuts and seals included)
Part No. 55911 2” Tailpieces (2-Speed Pump 1)
Part No. 55914 1.5” Tailpieces (2-Speed Pump 1)

NOTE: All TP panels work with both Revolution models BP1500 and BP1600 models. They all have capabilities for navigation, setting functions and modes (time, temperature, filter cycles, preferences), sensor related messages, reminder messages, diagnostic messages, and utilities such as fault logs.
Transforming the Control of Hot Tubs

Revolution

Revolution Components

1. Electric Housing Cover
2. Bi-directional Flow Heater
3. Heater Housing
4. Electronic Enclosure
5. Nut and Tailpiece
6. Support Legs
Revolution

System Dimensions

Transforming the Control of Hot Tubs

Manufactured under one or more of these patents. U.S. Patents: 5332944, 5361215, 5550753, 5559720, 5,883,459, 6253227, 6282370, 6590188, 6976052, 6965815, 7030343, 7,417, 854 b2, Canadian Patent: 2342614, Australian patent: 2373248 other patents both foreign and domestic applied for and pending. All material copyright of Balboa Water Group.
Installation
Transforming the Control of Hot Tubs

Revolution

When Mounting the System

The design and technology behind the Revolution allows it to be used in most any application, and can be mounted on the suction side or discharge side of the pump.

💡 TIP

To improve reliability, take steps to minimize vibration from the pump(s) that could be transmitted to the Revolution.

- Use rubber isolation pads under the pumps and flexible PVC between the filtration pump and the heater to help minimize vibration.
- Mount the system with the heater horizontal and as low as possible in the equipment compartment.
- To avoid any potential for water to drip directly on the system, do not mount the system directly under the control panel mounting location. Allow a drip-loop in the control panel wiring to keep any water that may travel down the wire from wicking onto the system box.
- Do not mount upside down.

Firmly attach mounting holes on each side of the system box with the screws and washers provided.
Top-Side Panel Installation

Choosing a Location for the Topside Panel

- Select a location that is easily accessible. The user should be able to reach the panel without stretching or getting into an awkward position.
- The mounting location should allow the user to see all of the visual indicators and display features of the topside panel without strain.
- Before drilling the cutout of the panel, test to see that the orientation of the topside panel is correct. Also, be sure that the cable reaches the control system without stretching or being forced against any sharp corners.
- Hold the topside panel at the desired mounting location and route the connecting cable toward the control system to determine that the cable is long enough to allow it to be connected inside of the unit.
- The mounting area must be above the maximum water level of the spa and in an area with good drainage to prevent the accumulation of any water. The topside panel should not be submerged.
- If the topside panel must be mounted underneath a spa cover, select a mounting location that will prevent the cover from resting directly upon the panel, but will allow the cover to seal when closed.
Topside Panel Installation (cont.)

1. Cut a mounting hole as shown. (A more detailed view is shown on the following page.)
2. Fit the topside panel into the hole to make sure the hole is the proper size before proceeding.
3. Remove all dust and particles from the mounting surface around the hole. A clean smooth surface that is dry and oil free is required for the adhesive on the back of the panel to attain a good bond.
4. Remove the paper backing from the adhesive on the rear of the panel. All of the adhesive should be exposed.
5. Route the connecting cable through the opening and place the topside panel into the opening. Align the panel and press firmly onto the mounting surface. Route the cable to the control system.
6. Remove the top cover to the control system, and remove the cable retaining clamp.
7. Plug the cable connector into the connector labeled J33. Replace the connector clamp and secure the screw.

Drill a .5” hole on the kerf of the center hole. This will clear chips from the hole saw and speed the drilling of the first (center) hole.

2.5” hole saw for each overlapping hole.

Pilot hole locations for optional fasteners.
Cutout Template for TP600

Drill a .5" hole on the kerf of the center hole. This will clear chips from the hole saw and speed the drilling of the first (center) hole.

Center to Center 1.7"

2.5" Hole Saw for each overlapping hole.

Pilot hole locations for optional fasteners

Note:
To print actual size, set Page Scaling to NONE in the Acrobat print dialog.

To download a PDF of this template, please visit our web site. Or, copy & paste the following link: http://www.balboawatergroup.com/getdoc.cfm?id=1341. The link will automatically download.
Cutout Template for TP400

Note:
To print actual size, set Page Scaling to NONE in the Acrobat print dialog.

To download a PDF of this template, please visit our web site. Or, copy & paste the following link:
http://www.balboawatergroup.com/getdoc.cfm?id=1366. The link will automatically download.

Manufactured under one or more of these patents. U.S. Patents: 5332944, 5361215, 5550753, 5559720, 5,883,459, 6253227, 6282370, 6590188, 6976052, 6965815, 7030343, 7,417, 834 b2, Canadian Patent: 2342614, Australian patent: 2373248 other patents both foreign and domestic applied for and pending. All material copyright of Balboa Water Group.
Transforming the Control of Hot Tubs

Revolution

Topside Panel Cable Installation

1. Plug the panel connector into J33.
2. Route the panel connecting cable under the cable clamp.

 TIP Allow for a drip-loop in the panel cable before it enters the enclosure.

3. Verify settings on the logic board.
4. At this time, while the lid is off, check to see if any system configuration changes must be made. (See Advanced System Setup.)

 TIP The only configurations requiring a change would be:
 - Adding or removing a blower, or
 - Changing the operation voltage.
Terminal Block Connections

Tools Needed: Phillips and flat screwdrivers, wire strippers.
1. Remove the four screws holding the system lid.
2. Attach the conduit or wire connector to the system box.
3. Strip away 1" of insulation of each wire.
4. Pull the cable through the access hole.
5. Push the wires into the proper terminals as indicated on the terminal block sticker.
6. Connect the ground wire to the Bond Lug ground bar through the hole in the system box and tighten the screw.
7. Tighten the screws on the terminal block; torque between 21 and 23 in lbs.

TIP

When installing and routing wires to the terminal block, providing service loops to incoming wiring is highly recommended. Service loops provide an extra length of wire in the event of future serviceability.

You are now ready to fill and power up the spa.
Filling and Priming the Spa
Transforming the Control of Hot Tubs

Revolution

Preparing the Spa
Preparing refers to:

- Filling the spa
- Priming the spa

Fill the spa
Fill the spa to its correct operating level. Follow manufacturer’s instructions.

TIP
Be sure to open all valves in the plumbing system before filling to allow as much air as possible to escape from the plumbing and the control system during the filling process.

Power-up the Spa
Each time the system powers up, a series of numbers is displayed as the system runs a self diagnostic check. This is normal, and lasts for about 10 seconds. Refrain from pressing any panel buttons during this time.
RUN PMPS PURG AIR ----

When this menu appears, the system is asking what you would like to do. You have 3 options:

- If the spa does not need to be primed, Priming Mode can be exited by pressing any TEMP button.
- Do nothing. (Pumping mode terminates within 4-5 minutes.)
- Manually initiate Priming Mode.

NOTE: Priming Mode can be bypassed if the system does not need to be primed. Priming Mode is necessary only if the spa is refilled and if there’s the possibility of air being in the system.

Pressing a TEMP button after start up exits the priming mode sequence. The display may not show the water temperature immediately, yet will appear once polling takes place.
Revolution

Priming Mode

- Press to Start Pump 1 at Low Speed
- Press again to Switch to High Speed
- Press to Start Pump 2

Press the JETS button once to start Pump 1 in low speed
- Press again to switch to high speed
- Press the AUX button to turn on Pump 2, if available. Be sure that the 2nd pump is energized.
- The pumps will now be running at high speed to assist priming.

IMPORTANT

A pump should not be allowed to run without priming for more than 2 minutes. Under NO circumstances should a pump be allowed to run without priming beyond the end of the 4 - 5 minute priming mode. Doing so may cause damage to the pump and cause the system to energize the heater and go into an overheat condition.
If the Pumps have not Primed

- If the pumps have not primed after 2 minutes, and water is not flowing from the jets in the spa, do not allow the pumps to continue to run. Turn off the pumps and repeat the process.
- Turning the power off and back on again will initiate a new pump priming session. Sometimes momentarily turning the pump off and on will help it to prime.
- Do not do this more than 5 times. If the pump(s) will not prime, shut off the power to the spa and call for service.
Exiting Priming Mode

Once the system has exited Priming Mode, it takes approximately 1 minute of water flowing through the heater before water temperature is determined and then displayed.

After successfully priming the system (or exiting Priming Mode), configure the system by setting filtration times, dual temperature ranges, and so on.

It is recommended that the time be set first.
Initial Software Configuration
Transforming the Control of Hot Tubs

Revolution

Setting the Time
Set the time before operating the system. Filtration times and other features are determined by the panel clock being set.

To Set the Time
- Press TEMP
- The temperature flashes
- Press LIGHT repeatedly until SET TIME appears

Note: SET TIME appears if this is the first time the clock is set after a system start or restart.
Transforming the Control of Hot Tubs

Revolution

Setting the Time (cont.)

Note: TIME and the current set time is displayed if the time is being reset.

- Press TEMP

- When the screen flashes hours, press TEMP to the change the hours up or down.

 NOTE: If the clock is in a 12 hour clock mode, AM/PM switches automatically as the time advances or recedes.

- Press LIGHT to change the display to minutes.
Setting the Time (cont.)

- When the screen flashes minutes, press TEMP to change the minutes up or down.

- Press LIGHT to exit.
- The display will return to the main screen in approx. 10 sec.

If a 24 hour display is preferred, see Setting the 24 Hour Clock.
Diagnostic Messages
Transforming the Control of Hot Tubs

Revolution

Messages
Messages are part of the diagnostic function of the Revolution and require action.
Transforming the Control of Hot Tubs

Revolution

General Messages

---°F ---°C

After the pump has been running for 1 minute, the temperature will be displayed.

42°F TOO COLD

A potential freeze condition has been detected, or the Aux Freeze Switch has closed, and all pumps and blower are activated. All pumps and blower are ON for at least 4 minutes after the potential freeze condition has ended, or when the aux freeze switch opens.

In some cases, pumps may turn on and off and the heater may operate during Freeze Protection.

This is an operational message, not an error indication.

NO COMM

The control panel is not receiving communication from the System. Call for Service.

---°F ---°C

Water Temperature is Unknown

42°F TOO COLD

Too Cold - Freeze Protection

NO COMM

No Communications
Pre-Production Software

°F or °C is replaced by °T

BETA VERSION ----

The Control System is operating with test software. Call for Service.

102°T

The Control System is in Test Mode. Call for Service.

Flow Related Checks

Check for low water level, suction flow restrictions, closed valves, trapped air, too many closed jets and pump prime.

On some systems even when spa is shut down, some equipment may occasionally turn on to continue monitoring temperature or if freeze protection is needed.
Heater Related Messages

HTR FLOW LOSS ----
There may not be enough water flow through the heater to carry the heat away from the heating element. Heater start up will begin again after about 1 min. See “Flow Related Checks” below.

HTR FLOW FAIL ----
There is not enough water flow through the heater to carry the heat away from the heating element and the heater has been disabled. See “Flow Related Checks” below. After the problem has been resolved, you must press any button to reset and begin heater start up.

HTR MAY BE DRY ---- WAIT ----
Possible dry heater, or not enough water in the heater to start it. The spa is shut down for 15 min. Press any button to reset the heater start-up. See “Flow Related Checks” below.

HTR DRY ----
There is not enough water in the heater to start it. The spa is shut down. After the problem has been resolved, you must press any button to reset and restart heater start up. See “Flow Related Checks” below.

* This message can be reset from the topside panel with any button press.
Transforming the Control of Hot Tubs

Revolution

Heater Related Messages (cont.)

WATR TOO HOT ---- (OHS)

One of the water temp sensors has detected spa water temp 110°F (43.3°C) and spa functions are disabled. System will auto reset when the spa water temp is below 108°F (42.2°C). Check for extended pump operation or high ambient temp.

HTR TOO HOT ---- (OHH)

One of the water temp sensors has detected 118°F (47.8°C) in the heater and the spa is shut down. You must press any button to reset when water is below 108°F (42.2°C). See “Flow Related Checks” below.

PRES BTN TO RSET

Some errors may require power to be removed and restored.

A reset message may appear with other messages.

* This message can be reset from the topside panel with any button press.
Sensor-Related Messages

102°F SNSR BAL-ANCE
The temperature sensors MAY be out of sync by 2°F or 3°F. Call for Service.

SNSR SYNC ---- CALL FOR SRVC ----
The temperature sensors ARE out of sync. The Sensor Balance is Poor. Fault has been established for at least 1 hour. Call for Service.

SNSR A ---- CALL FOR SRVC ----
A temperature sensor or sensor circuit has failed. Call for Service.

SNSR B ---- CALL FOR SRVC ----
A temperature sensor or sensor circuit has failed. Call for Service.

* This message can be reset from the topside panel with any button press.
Transforming the Control of Hot Tubs

Revolution

System-Related Messages

MEM FAIL ----
Memory Failure - Checksum Error*

At Power-Up, the system has failed the Program Checksum Test. This indicates a problem with the firmware (operation program) and requires a service call. This message will repeat on each power-up.

MEM RSET ----
Memory Failure - Persistent Memory Error*

Contact your dealer or service organization if this message appears on more than one power-up.

CNFG FAIL ----
Configuration Error – Spa will not Start Up

Contact your dealer or service organization.

* This message can be reset from the topside panel with any button press.
Transforming the Control of Hot Tubs

Revolution

System-Related Messages (cont.)

STUK PUMP **

A Pump appears to have been Stuck ON when spa was last powered ON.

HOT FALT ---- CALL FOR SRVC **

A Pump Appears to have been Stuck ON when spa was last powered UP.

WARNING:

HOT FALT indicates a serious condition and should not be treated lightly. The spa probably had a pump stuck in the ON position and could not be turned off, thereby overheating the water. The system tripped the GFCI to avoid additional heating.

NOTE: The GFCI Trip Feature must be enabled for this safety feature to function. The system should be monitored carefully and the main circuit board may need to be replaced.
Troubleshooting Support
Transforming the Control of Hot Tubs

Revolution

The Utilities Menu

Utilities provides general support of the Revolution. Utilities provides access to viewing information on hardware, panel, and software revisions. It also permits viewing of reminder and personal settings.

Main Menu > Utilities > Information >

- **SSID:** Software Self Identification (or, System Panel ID)
- **MODL:** Model
- **SETP:** Setup
- **SIG:** Signature
- **H0:** Heater type
- **SW16:** DIP switch settings
- **120V:** 120V or 240V configuration
- **PANL:** Panel version
- **A/B:** Display, alternates A and B sensor readings
- **FAULT LOG:** Displays fault log
- **DEMO:** Demo, only if enabled
Transforming the Control of Hot Tubs

Revolution

Entering the Utilities Menu

Press TEMP for a flashing display.

The temperature flashes.

Press LIGHT repeatedly until UTIL appears.
Revolution

Entering the Utilities Menu (cont.)

Press LIGHT.

Press LIGHT to set “A/B” On.

Please TEMP to toggle A/B sensor readings. When set to ON, Panel will display alternate readings from Sensor A and Sensor B on Main Screen.

Or, press LIGHT to continue to the Fault Log.
Transforming the Control of Hot Tubs

Revolution

Entering the Utilities Menu (cont.)

Displays Fault Log.

Waiting 10 seconds allows the screen to return to normal operation.
Transforming the Control of Hot Tubs

Revolution

Entering the Sub-utilities Menu

Press TEMP for a flashing display.
Transforming the Control of Hot Tubs

Revolution

Entering the Sub-utilities Menu (cont.)

Press TEMP.

SSID is displayed.

After SSID is displayed, a string of numbers appear. There is a two second delay on each number.

Press LIGHT to view MODL.
Transforming the Control of Hot Tubs

Revolution

Entering the Sub-utilities Menu (cont.)

After MODL is displayed, the string of numbers is displayed. (There is a two second delay on each number.)

Press LIGHT to view SETP.

Set-up displays the hardware set-up: S01, S 02, S 03, etc. (There is a two second delay on each number.)
Transforming the Control of Hot Tubs

Revolution

Entering the Sub-utilities Menu (cont.)

Press LIGHT to view SIG.

Revolution's current SIG (Signature) appears. (There is a two second delay on each number.)

Press LIGHT to view current VAC input power sensed by the Revolution.
Transforming the Control of Hot Tubs

Revolution

Entering the Sub-utilities Menu (cont.)

Current VAC input power shown. Press LIGHT to continue to display Heater Type.

Current Heater Type shown. Press LIGHT to continue to display DIP Switch Settings.

Current DIP Switch settings.

In this case:
- 0 = DIP Switch 1 – Test Mode Off (0) or On (1)
- 3 = DIP Switch 2+3+4 = the number of HS pumps with heat
- 1 = N/A or Special Amperage Rule 1 or 2
- 0 = Store Settings (0) or Memory Reset (1)
Transforming the Control of Hot Tubs

Revolution

Entering the Sub-utilities Menu (cont.)

Press LIGHT to continue to display Panel Version.

Pressing LIGHT again will take you back to INFO.

To EXIT to the Main Screen, wait 10 seconds to allow the screen to return to normal operation.
Fault Log

The Fault Log stores up to 24 events in memory and they can be reviewed under the Fault Log Menu.

Each event captures a Fault Message Code, how many days have passed since the fault, Time of the fault, Set Temperature during the fault, and Sensor A and B temperatures during the fault. The Fault Log is also available from the Test Menu (in Test Mode).
Transforming the Control of Hot Tubs

Revolution

Fault Log (cont.)

Press TEMP for a flashing display.

Press LIGHT repeatedly until UTIL appears.

The temperature flashes.
Fault Log (cont.)

Press LIGHT repeatedly until FALT appears.

Pressing TEMP displays up to 24 messages. Fewer messages may be displayed.

Each press of the LIGHT button displays the next numbered fault log event. Pressing TEMP at any fault event reveals a Message Code (next page).
Fault Log (cont.)

Pressing TEMP at any fault event reveals a Message Code

- Continuing to press TEMP reveals additional information for that specified numbered fault event.
- Waiting 30 seconds inside the fault log menu allows the screen to return to normal operation.

Fault Log Message Codes

- MXXX: Fault Message Code
- DZZZ: How many days have passed since the fault
- Time of the fault
- Set Temperature during the fault
- Sensor A Temperature during the fault
- Sensor B Temperature during the fault
Advanced System Configuration & Setup
Revolution

System Configuration

Flexibility in the Revolution allows the manufacturer or installer to choose from eight (8) preconfigured system options. Changing the configurations is made via the topside panel and in some options with a simple jumper wire change on the system board.

A basic configuration is shipped from the factory and any optional setups are documented here.

TIP

- The default factory setting is Setup 1: 2 Speed, Pump 1; 1 Speed, Pump 2.
- Most configurations only require a software change via the topside panel.
- Wiring changes are only needed for adding/removing a blower or changing an operating voltage.
Transforming the Control of Hot Tubs

Revolution

To Configure the Revolution

1. Decide on a configuration. (Consider what devices will be connected; see chart below.)
2. Make any changes on the power board, if needed.
3. If changing voltage, make a DIP switch change on the logic board.
4. Install incoming voltage supply wires.
5. If needed, configure the software through the panel.

Configuration Table

<table>
<thead>
<tr>
<th>Setup No.</th>
<th>Pump 1 (P1)</th>
<th>Pump 2 (P2)</th>
<th>Blower</th>
<th>Circ Pump</th>
<th>Ozone</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 SPD</td>
<td>1 SPD</td>
<td>NA</td>
<td>NA</td>
<td>240V</td>
<td>240V 60Hz</td>
</tr>
<tr>
<td>2</td>
<td>1 SPD</td>
<td>1 SPD</td>
<td>NA</td>
<td>YES</td>
<td>240V</td>
<td>240V 60Hz</td>
</tr>
<tr>
<td>3</td>
<td>2 SPD</td>
<td>NA</td>
<td>YES</td>
<td>NA</td>
<td>240V</td>
<td>240V 60Hz</td>
</tr>
<tr>
<td>4</td>
<td>1 SPD</td>
<td>NA</td>
<td>YES</td>
<td>YES</td>
<td>240V</td>
<td>240V 60Hz</td>
</tr>
<tr>
<td>5</td>
<td>2 SPD</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>240V</td>
<td>240V 60Hz</td>
</tr>
<tr>
<td>6</td>
<td>1 SPD</td>
<td>NA</td>
<td>NA</td>
<td>YES</td>
<td>240V</td>
<td>240V 60Hz</td>
</tr>
<tr>
<td>7</td>
<td>2 SPD</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>120V</td>
<td>120V 60Hz</td>
</tr>
<tr>
<td>8</td>
<td>1 SPD</td>
<td>NA</td>
<td>NA</td>
<td>YES</td>
<td>120V</td>
<td>120V 60Hz</td>
</tr>
</tbody>
</table>
Revolution

Configuration Setup 1, 2, 5 & 6

240 Volt Configuration without Blower

Power Board:
- Wiring changes: Not required
- Voltage: 240V, 60Hz
- Heater: 4.0 kW @ 240 VAC

Logic Board:
- S1 DIP switch No. 2: ON
- LED Spa Light (J15): 12 VAC 1.0 A Max.

Default Setup 1 includes:

Setup 1, 2, 5 & 6
- Factory default settings.
- As shipped; no wiring changes needed.

Power Board Setup Chart

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 SPD</td>
<td>1 SPD</td>
<td>NA</td>
<td>NA</td>
<td>240V</td>
<td>J12</td>
</tr>
<tr>
<td>2</td>
<td>1 SPD</td>
<td>1 SPD</td>
<td>NA</td>
<td>YES</td>
<td>240V</td>
<td>J12</td>
</tr>
<tr>
<td>5</td>
<td>2 SPD</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>240V</td>
<td>J12</td>
</tr>
<tr>
<td>6</td>
<td>1 SPD</td>
<td>NA</td>
<td>NA</td>
<td>YES</td>
<td>240V</td>
<td>J12</td>
</tr>
</tbody>
</table>
Transforming the Control of Hot Tubs

Revolution

Configuration Setup 3 & 4

240 Volt Configuration with Blower

NOTE: The top logic board must be removed to gain access to the connections on the power board.

If the board configuration is changed, the software setup must be changed. This is accomplished in the SETP menu under UTIL.

Power Board:

- Wiring changes: Move J12 to J13
- Voltage: 240V, 60Hz
- Heater: 4.0 KW @ 240 VAC

Logic Board:

- S1 DIP switch No. 2: ON
- LED Spa Light (J15): 12 VAC 1.0 A Max.

Setup 3 & 4

Move jumper wire connector J12 to J13.

Power Board Setup Chart

<table>
<thead>
<tr>
<th>Setup No.</th>
<th>Pump 1 (P1)</th>
<th>Pump 2 (P2)</th>
<th>Blower</th>
<th>Circ Pump</th>
<th>Ozone</th>
<th>Jumper 15 Connects To</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>J8</td>
<td>NA</td>
<td>YES</td>
<td>NA</td>
<td>240V</td>
<td>J13</td>
</tr>
<tr>
<td>4</td>
<td>1 SPD</td>
<td>NA</td>
<td>YES</td>
<td>YES</td>
<td>240V</td>
<td>J13</td>
</tr>
</tbody>
</table>
Revolution

Configuration Setup 7 & 8

120 Volt Configuration

NOTE: The top logic board must be removed to gain access to the connections on the power board.

All services will run at 120V when the jumper J29 - J33 is installed.

Power Board:
Voltage: 120V, 60Hz
Heater: 1.0 KW @ 120 VAC

Logic Board:
S1 DIP switch No. 2: OFF
LED Spa Light (J15): 12 VAC 1.0 A Max.

<table>
<thead>
<tr>
<th>Setup No.</th>
<th>Pump 1 (P1)</th>
<th>Circ Pump</th>
<th>Ozone</th>
<th>S1 Switch No. 2</th>
<th>Jumper 15 Connects To</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>J8</td>
<td>J21</td>
<td>120V</td>
<td>OFF</td>
<td>J12</td>
</tr>
<tr>
<td>8</td>
<td>J24</td>
<td>J22</td>
<td>120V</td>
<td>OFF</td>
<td>J12</td>
</tr>
</tbody>
</table>

Wiring changes:
Add Jumper J29 - J33 to change system to 120V.
The following pages are BP1600 230V setups

There are 6 setups, and each setup is capable of running at 230V 16A or 32A. Two major changes in each setup is with the Dip Switch settings and moving wiring from J12 to J13, or vice versa, depending on the system that is set up.

Recheck all wiring for each setup before power up.

A common setup change involves a High Speed Pump with Heat (Dip Switch number 2).

A manufactured setup (16A) has the Special Amperage Rule to ON.
Setup 1-16 – As Manufactured

Power Requirements:

Single Service [3 wires (line, neutral, ground)]
230VAC, 50Hz, 1p, 16A, (Circuit Breaker rating = 20A max.)

System Outputs - 16A Service:

Pump 1 230VAC 2-Speed 7.5A max 30-minute timer for Low Speed, 15 Minutes for High Speed
This is the heater pump
Must deliver a minimum of 20 GPM through heater
Low Speed may not exceed 2A max
Pump 2 230VAC 1-Speed 7.5A max 15-minute timer
Ozone 230VAC .5A max Uses the same relay as Pump 1 Low
Spa Light 10VAC On/Off 1A max 4-Hour timer.
Heater 3kW @ 240VAC

Setup 1-32

Power Requirements:

Single Service [3 wires (line, neutral, ground)]
230VAC, 50Hz, 1p, 32A, (Circuit Breaker rating = 40A max.)

System Outputs - 32A Service:

Pump 1 230VAC 2-Speed 12A max 30-minute timer for Low Speed, 15 Minutes for High Speed
This is the heater pump
Must deliver a minimum of 20 GPM through heater
Pump 2 230VAC 1-Speed 12A max 15-minute timer
Ozone 230VAC .5A max Uses the same relay as Pump 1 Low
Spa Light 10VAC On/Off 1A max 4-Hour timer.
Misc. 32 @ 240VAC

Configuration Changes based on Default

Feature Orig. Setup 1 Changes to
32 & 332 Hot Output Useable
DIP Switch Option Orig. Setup 1 Changes to
Add 1 High Speed Pump with Heat DIP Switch 2 OFF DIP Switch 2 ON
Setup 2-16

Power Requirements:
Single Service [3 wires (line, neutral, ground)]
230VAC, 50Hz, 1p, 16A, (Circuit Breaker rating = 20A max.)

System Outputs - 16A Service:
- Pump 1: 230VAC 1-Speed 6.5A max 15-minute timer
- Pump 2: 230VAC 1-Speed 6.5A max 15-minute timer
- Circ Pump: 230VAC 1-Speed 2A max Programmable Filtration Cycles + Polling
 - This is the heater pump
 - Must deliver a minimum of 20 GPM through heater
- Ozone: 230VAC .5A max Uses the same relay as the Circ Pump
- Spa Light: 10VAC On/Off 1A max 4-Hour timer.
- Heater: 3KW @ 240VAC

Wiring Diagram and Settings

Configuration Changes based on Default

<table>
<thead>
<tr>
<th>Feature</th>
<th>Orig. Setup 1</th>
<th>Changes to</th>
</tr>
</thead>
<tbody>
<tr>
<td>J8</td>
<td></td>
<td>2-Speed Pump 1</td>
</tr>
<tr>
<td>J321</td>
<td></td>
<td>Not Used (non-circ) Circ Pump Enabled</td>
</tr>
</tbody>
</table>

Blue indicates changes from the original Setup 1 default

Setup 2-32

Power Requirements:
Single Service [3 wires (line, neutral, ground)]
230VAC, 50Hz, 1p, 32A, (Circuit Breaker rating = 40A max.)

System Outputs - 32A Service:
- Pump 1: 230VAC 1-Speed 12A max 15-minute timer
- Pump 2: 230VAC 1-Speed 12A max 15-minute timer
- Circ Pump: 230VAC 1-Speed 2A max Programmable Filtration Cycles + Polling
 - This is the heater pump
 - Must deliver a minimum of 20 GPM through heater
- Ozone: 230VAC .5A max Uses the same relay as the Circ Pump
- Spa Light: 10VAC On/Off 1A max 4-Hour timer.
- Heater: 3KW @ 240VAC

Wiring Diagram and Settings

Configuration Changes based on Default

<table>
<thead>
<tr>
<th>Feature</th>
<th>Orig. Setup 1</th>
<th>Changes to</th>
</tr>
</thead>
<tbody>
<tr>
<td>J8</td>
<td></td>
<td>2-Speed Pump 1</td>
</tr>
<tr>
<td>J32 & J33</td>
<td></td>
<td>Not Used (non-circ) Circ Pump Enabled</td>
</tr>
</tbody>
</table>

DIP Switch Option

Add 1 High Speed Pump with Heat. DIP Switch 2 OFF DIP Switch 2 ON

Blue indicates changes from the original Setup 1 default
Setup 3-16

Power Requirements:
Single Service [3 wires (line, neutral, ground)]
230VAC, 50Hz, 1p, 16A, (Circuit Breaker rating = 20A max.)

System Outputs - 16A Service:
- Pump 1: 230VAC 2-Speed 10A max 30-minute timer for Low Speed, 15 Minutes for High Speed
- Blower: 230VAC 1-Speed 4A max 15-minute timer
- Ozone: 230VAC .5A max Uses the same relay as Pump 1 Low
- Spa Light: 10VAC On/Off 1A max 4-Hour timer.
- Heater: 3kW @ 240VAC

Configuration Changes based on Default

Feature	Orig. Setup 1	Changes to
J14, TP600 Button 2, TP400 Button 4, LED 2, AX10A2 | Pump 2 | Blower

Blue indicates changes from the original Setup 1 default

Setup 3-32

Power Requirements:
Single Service [3 wires (line, neutral, ground)]
230VAC, 50Hz, 1p, 32A, (Circuit Breaker rating = 40A max.)

System Outputs - 32A Service:
- Pump 1: 230VAC 2-Speed 12A max 30-minute timer for Low Speed, 15 Minutes for High Speed
- Blower: 230VAC 1-Speed 4A max 15-minute timer
- Ozone: 230VAC .5A max Uses the same relay as Pump 1 Low
- Spa Light: 10VAC On/Off 1A max 4-Hour timer.
- Heater: 3kW @ 240VAC
- Misc. 32 & 332: 230VAC 3A max Hot output (Stereo). Fused equipment or in-line fuse required.

Configuration Changes based on Default

Feature	Orig. Setup 1	Changes to
J14, TP600 Button 2, TP400 Button 4, LED 2, AX10A2 | Pump 2 | Blower
J32 & J332 | | Hot Output | Useable
DIP Switch Option
Add 1 High Speed Pump with Heat | | DIP Switch 2 OFF | DIP Switch 2 ON

Blue indicates changes from the original Setup 1 default
Setup 4-16

Power Requirements:
Single Service [3 wires (line, neutral, ground)]
230VAC, 50Hz, 1p, 16A, (Circuit Breaker rating = 20A max.)

System Outputs - 16A Service:
- Pump 1: 230VAC, 1-Speed, 8A max, 15-minute timer
- Blower: 230VAC, 1-Speed, 4A max, 15-minute timer
- Circ Pump: 230VAC, 1-Speed, 2A max
 - Programmable Filtration Cycles + Polling
 - Must deliver a minimum of 20 GPM through heater

Ozone: 230VAC, .5A max
- Uses the same relay as the Circ Pump
- Must deliver a minimum of 20 GPM through heater

Spa Light: 10VAC, On/Off, 1A max, 4-Hour timer
Heater: 4kW @ 240VAC

Configuration Changes based on Default

<table>
<thead>
<tr>
<th>Feature</th>
<th>Orig. Setup 1</th>
<th>Changes to</th>
</tr>
</thead>
<tbody>
<tr>
<td>J8</td>
<td>2-Speed Pump 1</td>
<td>1-Speed Pump 1</td>
</tr>
<tr>
<td>J14, TP600 Button 2, TP400 Button 4, LED 2, AX10A2</td>
<td>Pump 2</td>
<td>Blower</td>
</tr>
<tr>
<td>J321</td>
<td>Not Used (non-circ)</td>
<td>Circ Pump Enabled</td>
</tr>
</tbody>
</table>

Blue indicates changes from the original Setup 1 default

Setup 4-32

Power Requirements:
Single Service [3 wires (line, neutral, ground)]
230VAC, 50Hz, 1p, 32A, (Circuit Breaker rating = 40A max.)

System Outputs - 32A Service:
- Pump 1: 230VAC, 1-Speed, 12A max, 15-minute timer
- Blower: 230VAC, 1-Speed, 4A max, 15-minute timer
- Circ Pump: 230VAC, 1-Speed, 2A max
 - Programmable Filtration Cycles + Polling
 - Must deliver a minimum of 20 GPM through heater

Ozone: 230VAC, .5A max
- Uses the same relay as the Circ Pump
- Must deliver a minimum of 20 GPM through heater

Spa Light: 10VAC, On/Off, 1A max, 4-Hour timer
Heater: 4kW @ 240VAC
Misc: 32 & 332: 230VAC, 4A max
- Hot Output (Stereo). Fused equipment or in-line fuse required.

Configuration Changes based on Default

<table>
<thead>
<tr>
<th>Feature</th>
<th>Orig. Setup 1</th>
<th>Changes to</th>
</tr>
</thead>
<tbody>
<tr>
<td>J8</td>
<td>2-Speed Pump 1</td>
<td>1-Speed Pump 1</td>
</tr>
<tr>
<td>J14, TP600 Button 2, TP400 Button 4, LED 2, AX10A2</td>
<td>Pump 2</td>
<td>Blower</td>
</tr>
<tr>
<td>J321</td>
<td>Not Used (non-circ)</td>
<td>Circ Pump Enabled</td>
</tr>
<tr>
<td>32 & 332</td>
<td>Hot Output</td>
<td>Useable</td>
</tr>
</tbody>
</table>

Blue indicates changes from the original Setup 1 default
Setup 5-16

Power Requirements:
Single Service [3 wires (line, neutral, ground)]
230VAC, 50Hz, 1p, 16A. (Circuit Breaker rating = 20A max.)

System Outputs - 16A Service:
Pump 1 230VAC 2-Speed 12A max 30-minute timer for Low Speed, 15 Minutes for High Speed
This is the heater pump
Must deliver a minimum of 20 GPM through heater
Low Speed may not exceed 2A max.
Ozone 230VAC .5A max Uses the same relay as Pump 1 Low
Spa Light 10VAC On/Off 1A max 4-Hour timer.
Heater 3kW @ 240VAC

Setup 5-32

Power Requirements:
Single Service [3 wires (line, neutral, ground)]
230VAC, 50Hz, 1p, 32A. (Circuit Breaker rating = 40A max.)

System Outputs - 32A Service:
Pump 1 230VAC 2-Speed 12A max 30-minute timer for Low Speed, 15 Minutes for High Speed
This is the heater pump
Must deliver a minimum of 20 GPM through heater
Ozone 230VAC .5A max Uses the same relay as Pump 1 Low
Spa Light 10VAC On/Off 1A max 4-Hour timer.
Heater 3kW @ 240VAC
Misc. 32 & 33 230VAC 4A max Hot output (Stereo). Fused equipment or in-line fuse required.

Software Configuration Changes based on Default
Feature	**Orig. Setup 1**	**Changes to**
J14, TP600 Button 2, TP400 Button 4, LED 2, AX10A2 | Pump 2 | Not Used

DIP Switch Option
Add 1 High Speed Pump with Heat | DIP Switch 2 OFF
Add 2 HS Pumps with Heat | DIP Switch 2 ON
J2 & J32 | Hot Output | Useable

Blue indicates changes from the original Setup 1 default
Setup 6-16

Power Requirements:
Single Service [3 wires (line, neutral, ground)]
230VAC, 50Hz, 1p, 16A, (Circuit Breaker rating = 20A max.)

System Outputs:
- Pump 1: 230VAC 1-Speed 12A max
- Circ Pump: 230VAC 1-Speed 2A max (Programmable Filtration Cycles + Polling)
- Ozone: 230VAC .5A max
- Spa Light: 10VAC On/Off 1A max 4-Hour timer
- Heater: 3kW @ 240VAC

Wiring Diagram and Settings

Software Configuration Changes based on Default

<table>
<thead>
<tr>
<th>Feature</th>
<th>Orig. Setup 1</th>
<th>Changes to</th>
</tr>
</thead>
<tbody>
<tr>
<td>J8</td>
<td>2-Speed Pump 1</td>
<td>1-Speed Pump 1</td>
</tr>
<tr>
<td>J14, TP600 Button 2, TP400 Button 4, LED 2, AX10A2</td>
<td>Pump 2</td>
<td>Not Used</td>
</tr>
<tr>
<td>J21</td>
<td>Not Used (non-circ)</td>
<td>Circ Pump Enabled</td>
</tr>
</tbody>
</table>

Blue indicates changes from the original Setup 1 default

Setup 6-32

Power Requirements:
Single Service [3 wires (line, neutral, ground)]
230VAC, 50Hz, 1p, 32A, (Circuit Breaker rating = 40A max.)

System Outputs:
- Pump 1: 230VAC 1-Speed 12A max
- Circ Pump: 230VAC 1-Speed 2A max (Programmable Filtration Cycles + Polling)
- Ozone: 230VAC .5A max
- Spa Light: 10VAC On/Off 1A max 4-Hour timer
- Heater: 3kW @ 240VAC
- Misc.: 2A @ 240VAC

Wiring Diagram and Settings

Software Configuration Changes based on Default

<table>
<thead>
<tr>
<th>Feature</th>
<th>Orig. Setup 1</th>
<th>Changes to</th>
</tr>
</thead>
<tbody>
<tr>
<td>J8</td>
<td>2-Speed Pump 1</td>
<td>1-Speed Pump 1</td>
</tr>
<tr>
<td>J14, TP600 Button 2, TP400 Button 4, LED 2, AX10A2</td>
<td>Pump 2</td>
<td>Not Used</td>
</tr>
<tr>
<td>J21</td>
<td>Not Used (non-circ)</td>
<td>Circ Pump Enabled</td>
</tr>
<tr>
<td>J2 & J32</td>
<td>Hot output (Stereo). Fused equipment or in-line fuse required.</td>
<td></td>
</tr>
</tbody>
</table>

DIP Switch Option
- Add 1 High Speed Pump with Heat | DIP Switch 2 OFF | DIP Switch 2 ON

Blue indicates changes from the original Setup 1 default
Transforming the Control of Hot Tubs

Revolution

IT Electrical System (No Neutral)

TN and TT Electrical Services (Line, Neutral, Ground), IT Power Requirements

Single Service [3 wires (line, line, ground)]

230VAC, 50Hz, 1p, 16A/32A, (Circuit Breaker rating = 20A/40A max.)

- Protective Earth Wire (Green/Yellow) must be connected to system ground terminal as marked.
- All equipment (pumps, blower, and heater) runs on service line L1 with L2 acting as the return - 230VAC.
- Set the DIP switches according to the wiring diagram so that total system current draw never exceeds the rated service input when using a particular setup.

Three Service [4 wires (line, line, line, ground)]

230VAC, 50Hz, 1p, 16A/32A, (Circuit Breaker rating = 20A/40A max.)

- Protective Earth Wire (Green/Yellow) must be connected to system ground terminal as marked.
- All equipment (pumps, blower, and heater) runs on service line L1 with L2 acting as the return - 230VAC.
- Set the DIP switches according to the wiring diagram so that total system current draw never exceeds the rated service input when using a particular setup.
Revolution

Software Setup

Note: Software Setup is changed through the panel, and is only necessary if the wiring configuration is changed from factory default (Setup 1). If the factory default had not been changed, this section can be skipped.

1. Shut off power. Remove Lid.

2. Place DIP switch No. 1 on the logic board to the ON position.
Transforming the Control of Hot Tubs

Revolution

Software Setup (cont.)

3. Turn the power on.

4. Once RUN PMPS PUG AIR ---- appears, press TEMP twice. The temperature display flashes.

Run pumps to purge the air
Revolution

Software Setup (cont.)

5. Press LIGHT > TEMP > LIGHT TEST will appear.

6. Press TEMP repeatedly until your choice of S 01 - S 08 appears.

The temperature flashes.

Press repeatedly until a setup choice appears (S 01 - S 08)
Transforming the Control of Hot Tubs

Revolution

Software Setup (cont.)

7. Stop at your chosen setup. Press LIGHT to enter your choice into the configuration system. Press LIGHT again to exit the menu.

8. Power down. Place DIP switch No. 1 to the OFF position.

9. Software configuration is complete. Replace Lid.
Spa Information
Specifications & Certifications

Environmental
Operating Temperature: -20°C (-4°F) to 60°C (140°F)
Storage Temperature: -25°C (-13°F) to 85°C (185°F)
Humidity: Humidity: up to 85% RH, non condensing

Mechanical
Weight (without cable): 7.83 lbs. (3.552 kg)
Dimensions (without tail pieces): 8.5”H x 15.0”W x 5.8”D
Dimensions (mounting holes): 11.45” x 5.30”

Enclosure
IPx5 Thermoplastic Heater

Certifications
UL Standard/Files: UL 1563 5th Edition/E90059
UL 1795 3rd Edition/E188744

Electrical
Pump 1: 1 or 2 Speed - 240V/12A or 120V/12 A
Pump 2: 1 Speed - 240V/12A or 120V/12A
Circ Pump and Ozone (combined total): 240V/5.5A or 120V/5.5A
Blower: 240V/8A
LED Lights (No Incandescent lights): 12 VAC/.25A
Option Output: 4 Amp Max.

Heater Flow: 20 GPM minimum.

Patents & Copyrights
Manufactured under one or more of these patents. U.S. Patents: 5332944, 5361215, 5550753, 5559720, 5,883,459, 6253227, 6282370, 6590188, 6976052, 6965815, 7030343, 7,417,834 b2, Canadian Patent: 2342614, Australian patent: 2373248 other patents both foreign and domestic applied for and pending.

All material copyright of Balboa Water Group. Additional Patents Pending. Specifications subject to change without any prior notice.
Transforming the Control of Hot Tubs

Revolution

Auxiliary Panels

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>DEFAULT</th>
<th>OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aux Button A1</td>
<td>Jets 1</td>
<td>See Aux Button Note</td>
</tr>
<tr>
<td>Aux Button A2</td>
<td>Jets 2</td>
<td>See Aux Button Note</td>
</tr>
<tr>
<td>Aux Button A3</td>
<td>Unused</td>
<td>See Aux Button Note</td>
</tr>
<tr>
<td>Aux Button A4</td>
<td>Light</td>
<td>See Aux Button Note</td>
</tr>
</tbody>
</table>

TIP

Aux Buttons can be set with the following functions based on Manufacturer Specification: (These functions can vary by Setup Number as well).

2” TAILPIECE KIT, PART No. 55911
Standard 2” sockets to glue up to 2” PVC pipe.

1.5” TAILPIECE KIT, PART No. 55914
1.5” sockets to glue up to 1.5” PVC pipe with the I.D. Be sure to orient the fittings so that the insert is at the 12:00 position to prevent trapped air.

1” CIRC PUMP INSERT KIT, PART No. 55912
1” barb fittings for use with 1” tubing. Be sure to orient the fittings so that the insert is at the 12:00 position to prevent trapped air.

1” CIRC PUMP INSERT KIT, PART No. 55913
One fitting for direct coupling to the threaded suction of an appropriately-sized circ pump. A 1” barb fitting for use with 1” tubing is used on the other end of the heater. Be sure to orient the fittings so that the insert is at the 12:00 position to prevent trapped air.
Transforming the Control of Hot Tubs

Revolution

Recommended Installation Accessories

- Rated Suction Fittings
- Pump 1 Shut-Off Valves
- Pump 2 Shut-Off Valves
- Air Blower Check Valve
- Ground Fault Circuit Breaker (GFCI)
Transforming the Control of Hot Tubs

Revolution

Optional System Components

2ND PUMP

AIR BLOWER

OZONE GENERATOR

LED SPA LIGHT
Glossary

Circ Pump (or circulation pump)
Low horse power pump designated especially for maintenance of filtration and heating. It often runs all day.

Clean-up (or purge) Cycle
An action designed to circulate water to maintain sanitary conditions. Pumps or blowers purge standing water to prevent the water from becoming stagnant.

Filtration Cycle
Period of time designated to filter the system. Oftentimes there are two filter cycles, 12 hours apart, and designated as F1 and F2.

Freeze Protection
A safety feature detecting water or air temperature approaching freezing. Once a set low temperature is reached, an action is often initiated automatically. Oftentimes pumps will start to keep water circulating in all plumbing and the heater may operate.
Revolution

Glossary (cont.)

GFCI
A device intended to protect people in the event of an electrical malfunction. Spa owners should know how to test the GFCI as routine maintenance.

Preferences
Programmed events according to personal preferences.

SSID
Software Self Identification (or, System Panel ID)

Priming Mode
Act of water flow through the plumbing to purge air from the spa system. Normally, priming mode can be bypassed. The priming mode is necessary only if the spa is refilled and if there’s the possibility of air being in the system.
What Priming Mode does:

Each time the spa is powered up, it will enter Priming Mode. The purpose of Priming Mode is to allow the user to run each pump and manually verify that the pumps are primed (air is purged) and water is flowing. This typically requires observing the output of each pump separately, and is generally not possible in normal operation. Priming Mode lasts 4 minutes, but you can exit it earlier by pressing any Temp button. The heater is not allowed to run during Priming Mode. **NOTE:** If your spa has a Circ Pump, it will turn on with Jets 1 in Priming Mode. The Circ Pump will run by itself when Priming Mode is exited.

Programming

Setting an order and time for planned events, such as filter times, clean-up cycle, etc.
Transforming the Control of Hot Tubs

Revolution

Supporting Documents

- BWG TP600 and TP400 Control Panel Document No. 40940.
- A Cutout Template for the BWG TP600 and TP400 Control Panels.

Supporting Documents for Download

- Also, visit our technical site for Application Notes: http://service.balboa-instruments.com/appnotes/

 Topics include:
 Auxiliary Jet Pumps Installation
 Basic Configurations & System Mounting
 Circ Pump Plumbing: Vacuum Heater, Vacuum Filter, Pressure Heater,
 Freeze Sensor Installation
 GFCI: Requirements, Wiring, Trip Features & Trip Issues
 Guidelines, Plumbing Guidelines & Schematics.
 NON-Circ, 2-Speed Pump 1
 Ozone Installation
 pH and ORP Installation
 Spa Design Guidelines: Suction System Guidelines, Pressure System
 Vacuum Filter, Vacuum Heater, Pressure Filter.
Revolution

Codes and Compliance

- All of the electrical wiring methods and materials used to complete the electrical installation of the Revolution control system must be in accordance with the National Electrical Code or the Canadian Electric Code, as well as any local electrical codes in effect at the time of installation.
- The selection of electrical materials required to accomplish this installation and the installation of the control system must be made by, or be under the direct supervision of, a qualified electrician.
- The Revolution is classified as a “continuous duty appliance” and is intended primarily for installation at a single family dwelling. The installation recommendations and instructions contained in this manual are directed solely toward these issues.

WARNING!

If there is any doubt whether the system that you are installing into does not have these features, contact a licensed, qualified electrician. Do not attempt to modify the wiring yourself.
Transforming the Control of Hot Tubs

Revolution

Electrical Protection

1. Local Disconnect
 A local disconnect (sometimes referred to as an “electrical disconnect”) is installed apart from the main service panel. The local disconnect must be installed where readily accessible and within sight of the spa, but at least 5’ (1.5 meters) from the inside wall of the spa.

2. GFCI
 It is required by code to install a Ground Fault Circuit Interrupter (GFCI) in the supply power for a spa.

NOTE: A GFCI power cord is included with a 120VAC spa. This can be used for a cord-connected 120V setup only, and only in place of a stand-alone GFCI.

Safety and Electrical Systems

- Use minimum 6AWG copper conductors only.
- Torque field connections between 21 and 23 in-lbs.
- Connect only to a circuit protected by a Class A Ground Fault Circuit Interrupter (GFCI) CSA enclosure: Type 2.
- The Revolution is classified as a “continuous duty appliance” and is intended primarily for installation at a single family dwelling. The installation recommendations and instructions contained in this manual are directed solely toward these issues.

WARNING!

If there is any doubt whether the system that you are installing into does not have these features, contact a licensed, qualified electrician. Do not attempt to modify the wiring yourself.
Transforming the Control of Hot Tubs

Revolution

Voltage Checks

Set voltmeter to AC Volts. Voltages should check out as follows:

- Line 1 Black to Line 2 Red – 240VAC: (Range of acceptability: 216VAC – 246VAC)
- Either Line to Neutral – 120VAC (Range of acceptability: 108VAC – 132VAC)
- Either Line to Ground – 120VAC (Range of acceptability: 108VAC – 132VAC)
- Neutral to Ground – 0 Volts

These readings should be consistent at all points in all electrical enclosures and breaker boxes. If the readings are not in the acceptable ranges, do not power up the system.
Installation and Setup/Appendix
Transforming the Control of Hot Tubs

Revolution

General Spa Design Guidelines

System Orientations Supported

The Revolution supports two basic circulation configurations. When installing the Revolution, keep in mind the following characteristics that each system has. It will help in determining where to place and how to configure the Revolution. Follow these guidelines.

Two Circulation Systems

- **Non-circ System**: A non-circ system uses a 2-speed pump to heat and filter the spa.
- **Circ System**: A circ system uses a dedicated 1-speed pump to heat and filter the spa. The circ pump motor must not exceed 2 amps.

Also, keep in mind that:

- The heater requires at least 20 Gallons per Minute (GPM) of flow for proper function.
- Some systems may require at least 25 GPM.
Transforming the Control of Hot Tubs

Revolution

Spa Guidelines to Keep in Mind

Whether replacing an older control system, or if designing a new spa system, keep these guidelines in mind.

1. The suction system for the 2-speed pump or for the circ pump must be dedicated. There must not be any other pumps connected to this suction system.

2. The suction system for the 2-speed pump or for the circ pump must include the following:
 a. 2 suction fittings, or
 b. 1 suction fitting and a skimmer.

3. If the suction system for the 2-speed pump or for the circ pump includes a filter, it is desirable that the filter incorporate a by-pass around the filter cartridge that opens when the cartridge gets dirty. (Spring tension holding the by-pass valve closed must be overcome by the vacuum of the pump.) This by-pass should be capable of flowing a minimum of 20 GPM during the low speed operation of the 2-speed pump or during circ pump operation with the cartridge 100% blocked. The inclusion of a suction fitting appropriately plumbed into the suction circuit in conjunction with a vacuum filter may also meet this requirement.

4. The pressure system for the 2-speed pump or for the circ pump must be dedicated. There must not be any other pumps connected to this pressure system.
Revolution

5. The pressure system for the 2-speed pump or for the circ pump must discharge water freely into the spa.

6. If the pressure system for the 2-speed pump includes a diverter valve, or a diverter jet, there must not be an “off” position that would stop water flow from the pump or any other position that would throttle or reduce water flow from the pump.

7. If the pressure system for the 2-speed pump includes flow adjustable jets that can be 100% closed, at least 2 non-adjustable jets must be included in each possible inlet circuit so that a minimum of 20 GPM can flow during low pump operation with all the jets closed. Any other means of by-passing flow around the closed jets is acceptable as long as the by-pass means is down stream from the heater and allows a minimum of 20 GPM to flow through the heater during low speed operation.

8. If the pressure system for the 2-speed pump includes flow adjustable jets that do not close 100%, at least 20 GPM must flow during low speed operation through each possible inlet circuit with all the jets closed.

9. If the pressure system for a 2-speed pump or for a circ pump includes a filter, the filter must be equipped with a by-pass around the cartridge that opens when the cartridge gets dirty. (Spring tension holding the by-pass valve closed must be overcome by the pressure of the pump.) This by-pass must be capable of flowing a minimum of 20 GPM during low pump operation with the cartridge 100% blocked.
Revolution

10. If the pressure system for a 2-speed pump or for a circ pump includes branch circulation lines such as circuits intended to operate ozone injection systems, these branch circulation lines must be connected downstream from the heater.

11. Avoid inter-connection of the plumbing circuits for the 2-speed pump or for the circ pump with other pumps in the spa plumbing system for the purpose of freeze protection. The Revolution control system will provide freeze protection. There is also provision for remote sensing freeze protection if required.

12. Position inlets and jets in the spa so that they do not direct water flow towards suction fittings or skimmers. This will avoid a “thermal short circuit” and prevent excessive heater and pump cycling.

13. If service valves are a part of the circulation system for the 2-speed pump or for the circ pump, be sure to use valves that incorporate a means of “locking” in the open position.

14. If the 2-speed pump or the circ pump is replaced in the field by service personnel, the replacement used must equal or exceed the hydraulic specifications of the original pump.

15. To assure adequate performance, the spa plumbing must be 1 1/2” minimum. The use of 2” is highly recommended. Either schedule 40 or flexible PVC pipe is acceptable.

16. It is recommended that shut-off valves be installed in the suction and discharge lines.
Non-Circ Pump Plumbing Schematics

Non-Circ Systems must use a 2-speed Pump 1 for filtration and heating.
Circ Pump Plumbing Schematics

Circ Systems use a dedicated low horsepower pump.

Plumbing Schematic:
Circulation Pump, Pressure Heater, Pressure Filter

Plumbing Schematic:
Circulation Pump, Pressure Heater, Pressure Filter

Plumbing Schematic:
Circulation Pump, Vacuum Filter, Pressure Filter

Plumbing Schematic:
Circulation Pump, Vacuum Filter, Vacuum Heater
Revolution

Pressure and Suction Side Mounting

- The Revolution can be used in most any application. If installing in a newly built spa system, study the diagrams in order to plan the location of the Revolution. Also, keep in mind that:
- The heater requires at least 20 Gallons Per Minute (GPM) of flow for proper function.
- Some systems may require at least 25 GPM.
- **Pressure-Side System:**
 A pressure side heater system is a heater that is located on the discharge side of the pump.
- **Vacuum-Side System:**
 A vacuum side heater system is a heater that is located on the suction side of the pump.
Mounting

- Revolution technology allows mounting flexibility. The Revolution can be mounted on either the suction or pressure (discharge) side of the pump. However, it must be mounted on a flat surface parallel to the ground.

- To improve reliability, take steps to minimize vibration from the pump(s) that could be transmitted to the Revolution.

- Use rubber isolation pads under the pumps and flexible PVC between the filtration pump and the heater to help minimize vibration.

- Mount the system with the heater horizontal and as low as possible in the equipment compartment.

- To avoid any potential for water to drip directly on the system, do not mount the system directly under the control panel mounting location.

- Allow a drip-loop in the control panel wires to keep any water that may travel down the wire from wicking onto the system box.

- The Revolution can not be mounted upside down. The Revolution is not to be mounted sideways. The Revolution is only to be mounted upright on a flat horizontal surface.
Suction-Side System Mounting

- When mounting the system on the suction (vacuum) side of the pump, care must be taken to mount the system in such a way that it is aligned with the suction port on the pump wet-end. The suction-side mounting can generally be done much lower in the system, making it easier to keep proper water flow in the heater at all times. The system should be mounted with appropriate fasteners.

- **Note:** When employing suction-side mounting, the system may need to be placed on a spacer block so that it complies with UL height requirements for electrically live components, in the same manner as a pump motor.
Index

Symbols

6AWG copper conductors 85
12 hour clock mode 30
42°F TOO COLD 34
102°F SNSR BAL-ANCE 38
120 Volt Configuration 61
230V Conversions 62
240 Volt Configuration with Blower 60
240 Volt Configuration without Blower 59
55911, Part No. 11, 77
55914, Part No. 11, 77
---°F ---°C 34

A

A/B: Display 42
Accessories, Recommended Installation 78
Adequate drainage 4
Advanced System Configuration 56
air, trapped 35
alternates A and B sensor reading 42
appliance, continuous duty 84
Application Notes 83
Aux Freeze Switch 34
Auxiliary Panels 76

B

BETA VER- SION ---- 35
Bi-directional Flow Heater 12
block, spacer 96

C

cable connector 17
Canadian Electric Code 84
Certifications, Specifications & 75
Checks, Voltage 86
Circ Pump 80
Circ Pump Insert Kits 77
Circ Pump Plumbing Schematics 93
Circ System 88
Circuit, Class A Ground Fault 85
circulation pump 80
Class A GFCI 5
Class A Ground Fault Circuit 85
Clean-up (or purge) Cycle 80
closed jets 35
closed valves 35
CNFG FAIL ---- 39
Code, Canadian Electric 84
Code, Fault Message 52, 55
Code, Message 55
Code, National Electrical 84
Codes and Compliance 84
Codes, Fault Log Message 55
Compliance, Codes and 84
Components 12
Components, Optional System 79
condition, freeze 34
condition, overheat 25
conductors, 6AWG copper 85
Configuration, 120 Volt 61
Configuration, Advanced System 56
Configuration Setup 3 & 4 60
Configuration Setup 7 & 8 61
Configuration, System 57
Configuration Table 58
Connections, Terminal Block 21
connector, cable 17
connector, panel 20
continuous duty appliance 84
Conversions, 230V 62
Couplings (nuts and seals included) 11
Cutout Template 18, 19, 83
Cycle, Clean-up (or purge) 80
Cycle, Filtration 80
Cycle, Filtration Schematics 93
Circuit, Class A Ground Fault 85
D

Default Setup 1 includes 59
Dimensions 13
DIP Switch settings 50
disconnect, electrical 85
disconnect, local 85
drainage, Adequate 4
drip-loop 15, 20, 95
dry heater 36

electrical disconnect 85
Electrical Protection 85
Electrical Services 69
End User Warning 2
Entering the Utilities Menu 43
event, fault 55
Exiting Priming Mode 27

F

Factory default settings 59
failed, sensor circuit has 38
fault event 55
Fault Log 45, 52
Fault Log Message Codes 55
Fault Message Code 52, 55
Feature, GFCI Trip 40
Filling the spa 23
Filtration Cycle 80
freeze condition 34
freeze protection 35
Freeze Protection 80
Freeze Sensor Installation 83
G

GFCI 81
GFCI, Class A 5
GFCI Trip Feature 40
Glossary 80
guard, VG Compliant suction 4

H

H0: Heater type 42
hardware set-up 48
Heater, Bi-directional Flow 12
heater, dry 36
Heater Related Messages 36
Heater Type shown 50
HOT FALT ---- CALL FOR SRVC ---- 40
HTR DRY ---- 36
HTR FLOW FAIL ---- 36
HTR FLOW LOSS ---- 36
HTR MAY BE DRY ---- WAIT ---- 36
HTR TOO HOT ---- (OHH) 37

I

Identification, Software Self 42, 81
ID, System Panel 42, 81
Installation, Freeze Sensor 83
Installation, Ozone 83
Installation, Top-Side Panel 16
Installation, Topside Panel Cable 20
instructions, power connection 3
IT Electrical System 69
IT Power Requirements 69

J

jets, closed 35

K

Kits, Circ Pump Insert 77

Kit, Tailpiece 77

L

level, low water 35
local disconnect 85
location, mounting 16
Log, Fault 45, 52
low water level 35

M

MEM FAIL ---- 39
MEM RSET ---- 39
Menu, Entering the Utilities 43
Menu, Sub-utilities 46
Menu, Utilities 42, 43
Message Code 55
message, reset 37
Messages, Heater Related 36
Messages, Sensor-Related 38
Messages, System-Related 39
minimize vibration 95
mode, 12 hour clock 30
Mode, Exiting Priming 27
models, TP panels work with both Revolution 11
Model, System 11
Mode, Priming 27, 82
Mode, Test 40
MODL: Model 42
Mounting 95
mounting area 16
mounting location 16
mounting, suction-side 96
Mounting, Suction Side 94
Mount the system 15

N

National Electrical Code 84
NEC (National Electrical Code) 5
NO COMM 34

Non-Circ Pump Plumbing Schematics 92
Non-circ System 88
Notes, Application 83

O

OHS 37
Optional System Components 79
Options, Plumbing Kit 77
overheat condition 25
Ozone Installation 83

P

pads, rubber isolation 95
panel connector 20
Panels, Auxiliary 76
Panel, TP400 Series 11
Panel, TP600 11
Panel Version 51
PANL: Panel version 42
Part No. 55911 11, 77
Part No. 55914 11, 77
Plumbing Kit Options 77
Poor, Sensor Balance is 38
power connection instructions 3
Preferences 81
PRES BTTN TO RSET 37
pressure side heater system 94
prime, pump 35
Priming Mode 27, 82
Priming mode terminates 24
Priming the Spa 25, 26
Program Checksum Test 39
Programming 82
Protection, Electrical 85
protection, freeze 35
Protection, Freeze 80
Pump, Circ 80
pump, circulation 80
pump prime 35

98

Manufactured under one or more of these patents. U.S. Patents: 5332944, 5361215, 5550753, 5559720, 5,883,459, 6253227, 6282370, 6590188, 6976052, 6965815, 7030343, 7,417, 834 b2, Canadian Patent: 2342614, Australian patent: 2373248 other patents both foreign and domestic applied for and pending. All material copyright of Balboa Water Group.
R
readings, toggle A/B sensor 44
Recommended Installation Accessories 78
Requirements, IT Power 69
requirements, UL height 96
reset message 37
restrictions, suction flow 35
rubber isolation pads 95
RUN PMPS PURG AIR ---- 24

S
Schematics, Circ Pump Plumbing 93
Schematics, Non-Circ Pump Plumbing 92
Sensor Balance is Poor 38
sensor circuit has failed 38
Sensor-Related Messages 38
Services, Electrical 69
Service, Single 69
Service, Three 69
SETP: Setup 42
Set the time 29
settings, DIP Switch 50
settings, Factory default 59
settings, SW16: DIP switch settings 42
switch, Aux Freeze 34
System, Circ 88
System Configuration 57
System, IT Electrical 69
System Model 11
system, Mount the 15
System, Non-circ 88
System Panel ID 42, 81
system, pressure side heater 94
System-Related Messages 39
system, vacuum side heater 94

T
Table, Configuration 58
Tailpiece Kit 77
technical site 83
Template, Cutout 18, 19, 83
Terminal Block Connections 21
test software 35
Test the ground fault circuit interrupter 4
Three Service 69
time, Set the 29
TN and TT 69
toggle A/B sensor readings 44
Topside Panel Cable Installation 20
Top-Side Panel Installation 16
TP400 Series Panel 11
TP400T 16
TP400W 16
TP600 16
TP600 Panel 11
TP panels work with both Revolution models 11
trapped air 35
Tree, Utilities Menu 42
TT, TN and 69

U
UL height requirements 96
Utilities Menu 42, 43
Utilities Menu Tree 42

V
VAC input power shown 50
vacuum side heater system 94
valves, closed 35
valves, shut-off 91
Version, Panel 51
VG Compliant suction guard 4
vibration, minimize 95
Voltage Checks 86

W
Warning, End User 2
WATR TOO HOT ---- (OHS) 37
web site 18, 19